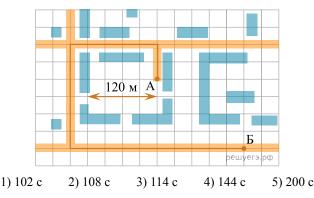
Централизованное тестирование по физике, 2016

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

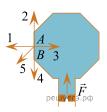
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Абитуриент провел поиск информации в сети Интернет о наиболее мощных гидроэлектростанциях (ГЭС) в мире. Результаты поиска представлены в таб-

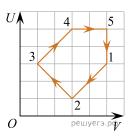

№	Название ГЭС	Мощность
1	Гури	$10,3 \cdot 10^6 \mathrm{кBT}$
2	Три ущелья	22,4 ГВт
3	Итайпу	14 · 10 ⁹ Вт
4	Тукуруи	$8,3 \cdot 10^3 \mathrm{MBr}$
5	Черчилл – Фолс	5430 МВт

Самая мощная ГЭС указана в строке таблицы, номер которой:

- 2) 2 3) 3 4) 4 5) 5
- **2.** Зависимость проекции скорости v_x материальной точки, движущейся вдоль оси Ox, от времени t имеет вид: $v_x = A + Bt$, где A = 5,0 м/с, $B=2,0\ {
 m M/c^2}.\ {
 m B}$ момент времени $t=3,5\ {
 m c}$ модуль скорости ${
 m \upsilon}$ материальной точки равен:
 - 1) 7,0 m/c 2) 11 m/c 3) 12 m/c 4) 17 m/c 5) 19 m/c


3. Если средняя путевая скорость движения автомобиля из пункта А в пункт Б $\langle \upsilon \rangle = 23,0\,\,{\rm кm/ч}$ (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

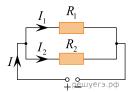
Примечание: масштаб указан на карте

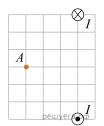


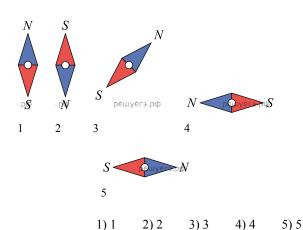
4. Масса m_1 первого тела в два раза больше массы m_2 второго тела. Если модули скоростей этих тел равны ($v_1 = v_2$), то отношение кинетической энергии первого тела к кинетической энергии второго тела $\frac{E_{k1}}{E_{k2}}$ равно:

- 1) 1,0 2) $\sqrt{2}$ 3) 2,0 4) 4,0 5) 8,0
- **5.** К вертикальному борту хоккейной коробки подлетела шайба со скоростью, модуль которой $\upsilon_1=25~\frac{\mathrm{M}}{\mathrm{C}},$ и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $\upsilon_2=\upsilon_1$. Если модуль изменения импульса шайбы при ударе о борт $|\Delta p|=8,0~\frac{\mathrm{Kr}\cdot\mathrm{M}}{\mathrm{C}},$ то масса m шайбы равна:
 - 1) 80 г 2) 120 г 3) 160 г 4) 240 г 5) 320 г
- 6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

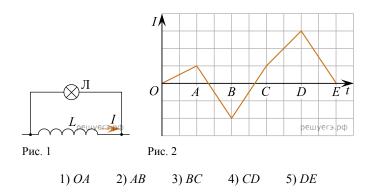
- 1) 1 2) 2 3) 3 4) 4 5) 5
- 7. Число N_1 атомов лития $\left(M_1=7\frac{\Gamma}{_{
 m MOJIb}}\right)$ имеет массу m_1 = 4 г, N_2 атомов кремния $\left(M_2=28\frac{\Gamma}{_{
 m MOJIb}}\right)$ имеет массу m_2 = 1 г. Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{16}$ 2) $\frac{1}{4}$ 3) 1 4) 4 5) 16
- **8.** При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300$ K до $T_2 = 420$ K. Если начальное давление газа $p_1 = 150$ кПа, то конечное давление p_2 газа равно:
 - 1) 180 кПа 2) 190 кПа 3) 200 кПа 4) 210 кПа 5) 220 кПа
- **9.** С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на работу, которую газ совершал:

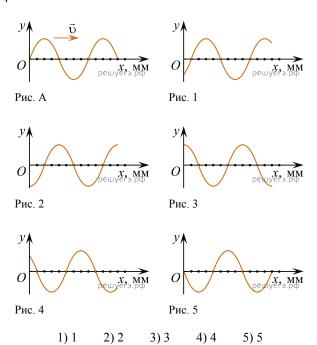

- 1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow 1$
- 10. Сила тока в солнечной батарее измеряется в:
 - 1) ваттах 2) вольтах 3) амперах 4) ватт-часах 5) электрон-вольтах
- **11.** На рисунке 1 изображены линии напряженности электростатического поля, созданного точечными зарядами q_1 и q_2 Направление напряженности \vec{E} электростатического поля, созданного системой зарядов q_1 и q_2 в точке A, обозначено на рисунке 2 цифрой:


Рис. 1


Рис. 2

- 1) 1 2) 2 3) 3 4) 4 5) 5
- **12.** На рисунке изображен участок электрической цепи, сила тока на котором I. Если сопротивление резистора R_1 в два раза больше сопротивления резистора R_2 ($R_1 = 2R_2$), то сила тока I_2 в резисторе R_2 равна:

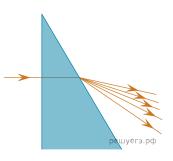

- 1) $\frac{3}{4}I$ 2) $\frac{2}{3}I$ 3) $\frac{1}{2}I$ 4) $\frac{1}{3}I$ 5) $\frac{1}{4}I$
- 13. По двум длинным прямолинейным проводникам, перпендикулярным плоскости рисунка, протекают токи, создающие в точке A магнитное поле (см.рис.). Сила тока в проводниках одинакова. Если в точку A поместить магнитную стрелку, то ее ориентация будет такая же, как и у стрелки под номером:



ка будет светить наименее ярко в течение интервала времени:

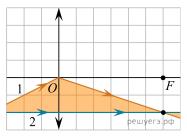
14. На рисунке 1 изображен участок электрической цепи, на котором параллельно катушке индуктивности L включена лампочка Π . График зависимости силы тока I в катушке индуктивности от времени t показан на рисунке 2. Лампоч-

15. По шнуру в направлении оси Ox распространяется поперечная гармоническая волна. На рисунке, обозначенном буквой A, изображен шнур в момент времени $t_0=0$ с. Если T — период колебаний точек шнура, то шнур в момент времени $t_1=\frac{3T}{4}$ изображен на рисунке, обозначенном цифрой:


16. На боковую поверхность стеклянного клина, находящегося в вакууме, падает параллельный световой пучок, содержащий излучение, спектр которого состоит из пяти линий видимого диапазона. Длины волн излучения соотносятся между собой как $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4 > \lambda_5$. Вследствие нормальной дисперсии после прохождения клина наибольшее отклонение от первоначального направления распространения будет у света с длиной волны:

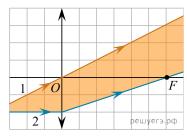
1) λ_1

2) λ₂


3) λ_3

4) λ₄

5) λ₅


17. На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:

1 0 F

Рис. 1

Рис. 2

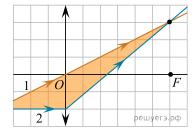


Рис. 3

Рис. 4

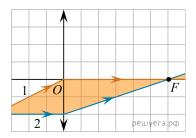
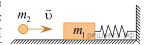


Рис. 5

- 1) 1 2) 2
- 3)3
- 4) 4
- 5) 5

18. Число электронов в нейтральном атоме бора ${}_{5}^{11}B$ равно:

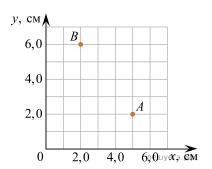

- 1) 5
- 2)6
- 3) 8 4) 11
- 5) 16

19. Парашютист совершил прыжок с высоты h над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=4,0$ с парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Дальнейшее снижение парашютиста до момента приземления происходило в течение промежутка времени $\Delta t_2=80,0$ с с постоянной вертикальной скоростью, модуль которой $\upsilon=36,0$ $\frac{\mathrm{KM}}{\mathrm{q}}$. Высота h, с которой парашютист совершил прыжок, равна ... м.

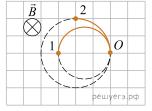
20. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой m=30 кг, площадь основания которого S=0,070 м 2 . Если давление, оказываемое чемоданом на пол, p=3,0 кПа, то модуль ускорения a лифта равен ... $\frac{Z_i^{M}}{c^2}$.

21. Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0=9,0$ $\frac{\text{M}}{\text{c}}.$ Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu=0,050,$ то пусть s, который пройдут аэросани до полной остановки, равен ... м.

22. На гладкой горизонтальной поверхности лежит брусок массой $m_1=60$ г, прикрепленный к стене невесомой пружиной жесткостью k=45 $\frac{H}{M}$ (см.рис.). Пластилиновый шарик массой m=60



(см.рис.). Пластилиновый шарик массой $m_2=60$ г, летящий горизонтально вдоль оси пружины, попадает в брусок и прилипает к нему. Если максимальное сжатие пружины $|\Delta l|=78\,$ мм, то модуль начальной скорости υ шарика непосредственно перед попаданием в брусок равен ... $\frac{\rm ZM}{c}$.


- **23.** При абсолютной температуре $T=290~{\rm K}$ в сосуде находится газовая смесь, состоящая из водорода, количество вещества которого $\upsilon_1=1,5~{\rm моль},$ и кислорода, количество вещества которого $\upsilon_2=0,60~{\rm моль}.$ Если давление газовой смеси $p=126~{\rm кПa}$, то объем V сосуда равен ... л.
 - **24.** Вода $\left(\rho = 1, 0 \cdot 10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}} \right)$ объемом $V = 250 \ \mathrm{cm}^3$

остывает от температуры $t_1 = 98~^{\circ}\mathrm{C}$ до температуры $t_2 = 78~^{\circ}\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов, то на высоту $h = 50~\mathrm{M}$ можно поднять материалы, максимальная масса m которых равна ... кг.

- **25.** Температура нагревателя идеального теплового двигателя на $\Delta t = 200~^{\circ}\mathrm{C}$ больше температуры холодильника. Если температура нагревателя $t = 300~^{\circ}\mathrm{C}$, то термический коэффициент полезного действия η двигателя равен ... %.
- **26.** Если работа выхода электрона с поверхности цинка $A_{\text{вых}}=3,7$ эВ составляет $n=\frac{1}{4}$ часть от энергии падающего фотона, то максимальная кинетическая энергия E_k^{max} фотоэлектрона равна ... эВ.
- **27.** Если точечный заряд q=4,00 нКл, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.

28. Два иона (1 и 2) с одинаковыми заряди $q_1 = q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1 = 8,0$ а. е. м., то масса второй частицы m_2 равна ... а. е. м.

29. В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.

30. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon=5,0$ В, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры Т. Бесконечно большим оно становится при $T\geqslant 400$ К (см. рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\rm Д_{\it K}}{\rm K\Gamma\cdot K}$, масса резистора m=4,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=320~\rm K$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.